Calibrated Very Robust Regression

نویسندگان

  • Marco Riani
  • Anthony C. Atkinson
  • Domenico Perrotta
چکیده

The behaviour of algorithms for very robust regression depends on the distance between the regression data and the outliers. We introduce a parameter λ that defines a parametric path in the space of models and enables us to study, in a systematic way, the properties of estimators as the groups of data move from being far apart to close together. We examine, as a function of λ, the variance and squared bias of five estimators and we also consider their power when used in the detection of outliers. This systematic approach provides tools for gaining knowledge and better understanding of the properties of robust estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of chronological age based on Demirjian dental age using robust ridge regression method

Introduction: Estimation of age has an important role in legal medicine, endocrine diseases and clinical dentistry. Correspondingly, evaluation of dental development stages is more valuable than tooth erosion. In this research, the modeling of calendar age has been done using new and rich statistical methods. Considerably, it can be considering as a practicable method in medical science that is...

متن کامل

Calibrated Prediction Intervals for Neural Network Regressors

Ongoing developments in neural network models are continually advancing the state-of-the-art in terms of system accuracy. However, the predicted labels should not be regarded as the only core output; also important is a well calibrated estimate of the prediction uncertainty. Such estimates and their calibration is critical in relation to robust handling of out of distribution events not observe...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011